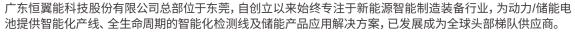


专注创新・更懂电芯

领先的锂电池智造解决方案

100,000+㎡ 厂房与办公面积

2000+ 全球雇员


500+ 研发与技术人员

10+ 海外交付超10个国家

7+ 境外子公司

公司人员规模2000余人,分布在中国(广东东莞、深圳、惠州、安徽蚌埠等地)、德国、法国、瑞典、日本、韩国、美国等,研发团队超过500人。

截止目前,公司电芯生产线与检测线已累计交付超500GWh,交付足迹遍布10个国家(中国、印度、日本、韩国、美国、西班牙、瑞典、法国、德国和匈牙利)及国内超50个城市。

公司秉承客户至上、产品领先的经营战略,以专业的设计、快速交付的能力与优质的服务获得了众多客户及行业机构的认可,成为了多家国内外头部电池制造商、整车装备厂和储能系统集成商的核心供应商。

企业 **)) 经营理念**

Our Company Philosophy

产品领先,客户至上 以客户价值的最大化为宗旨,实现企业价值的最大化

企业 **愿景与使命** Our Visions and Missions

企业愿景

成为引领全球新能源智能装备和综合能源解决方案的 科技创新型公司

企业使命

用科技创新提升客户竞争力,让智造更高效、能源更安全

HONOR AND QUALIFICATION

荣誉和资质

ISO9001: 2015 认证 ISO45001: 2018 认证 ISO14001: 2015 认证

CE 认证

UL 认证

VDA 认证

高新技术企业证书

10+ 国际PCT, 200+ 中国专利

CUSTOMERS AND PARTNERS

全球客户与合作伙伴

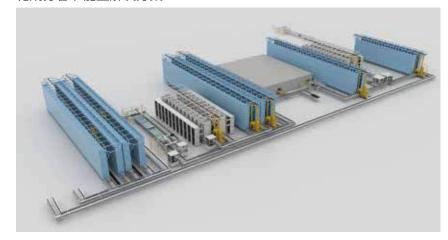
APPLICATION SCENARIOS

应用场景

锂电池电芯后段整线解决方案

储能系统配套解决方案

电芯模组&PACK检测解决方案


软件系统

产品目录

锂电芯制造及检测

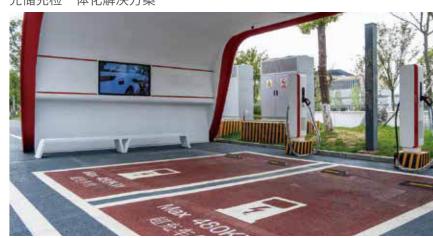
化成分容节能型解决方案

光储电站

储能系统集成解决方案

电池包及电池舱检测

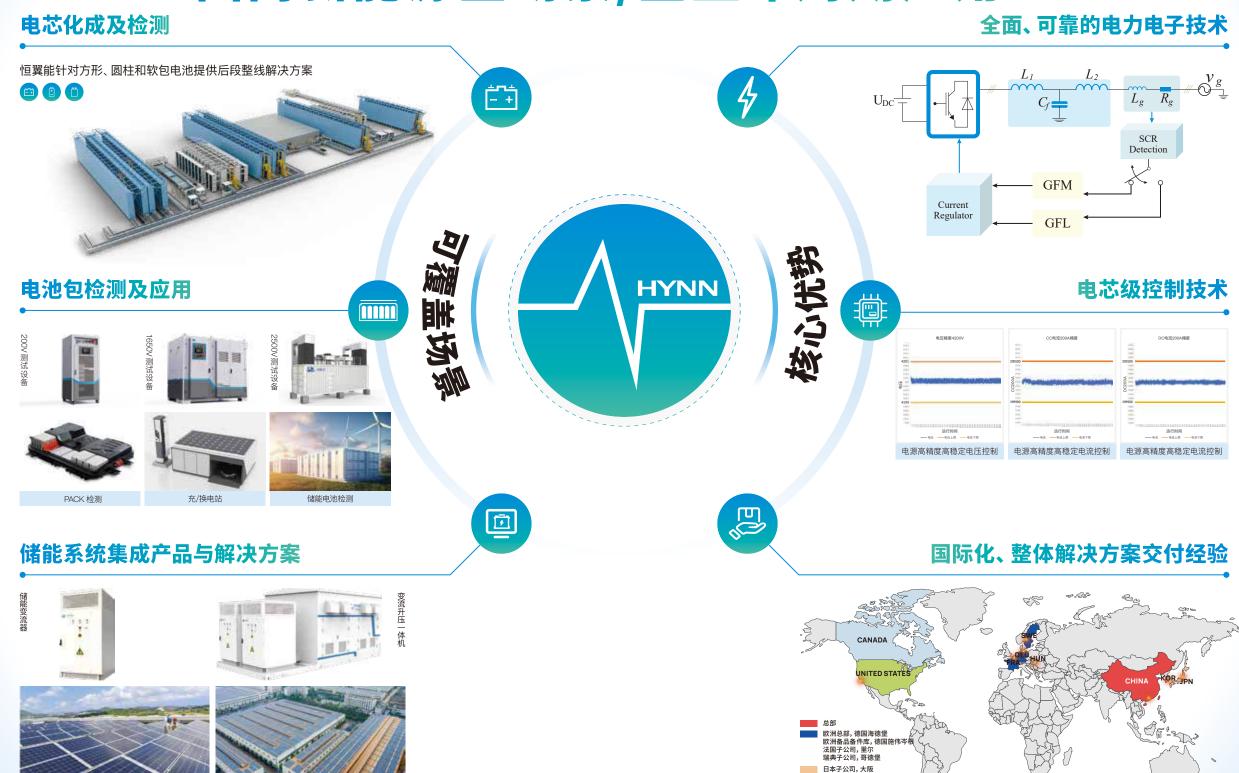
节能测试解决方案


工商业园区

微网节能型直流总线方案

电动汽车充换电站

光储充检一体化解决方案

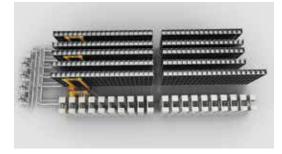

实验室

实验室测试解决方案

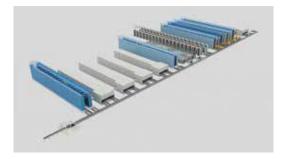
智慧能源产品体系

面向新能源全场景/全生命周期应用

韩国子公司,水原


可再生能源电站

TOP SUPPLIER FOR BATTERY MANUFACTURING SOLUTIONS


领先的锂电池智造解决方案

软包电池后处理线体解决方案Post-processing line pouch cell

产线概况

电池化成分容后段线体整体解决方案是恒翼能针对电 池芯生产线提供的整体规划服务,从一注完成到电芯分档下 料,依据电池生产工艺做最适当的系统性规划,包含仪器设 备构建、物流规划、生产管理系统等,提供多样客制功能,量 身打造高效益产线。

应用场合

包含锂电池生产工艺流程中的扫码装盘、预化成、高温静置(或浸润)、常温静置、分容(或老化)、OCV/IR、DCIR、分档工序。


系统特点

以托盘为载体,立体货架、巷道式堆垛起重机、各工序设备、机械手、条码扫描系统、自动输送系统及MES系统和WCS系统为要素下,构成一个完整的动力电池生产自动化物流闭环系统。

功能特点

电池化成分容线体系统是以托盘为载体,电芯放置于载盘流转到各制程站点进行测试,管理上采用计算机及条形码技术,实时监控、跟踪、追溯产品信息,系统高度集成化、自动化,生产效率显著。

整合了仪器设备、自动化机械物流、生产制造执行管理软体,将所有制程站点串联成一个大系统,透过科技化管理,人员只要在画面上操作设定,即可达到现场无人化生产,适合大量、一致性要求高的生产,具有节省人力、提高效率与稳定产能的优点。



SOLUTION HIGHLIGHTS

核心解决方案与技术亮点

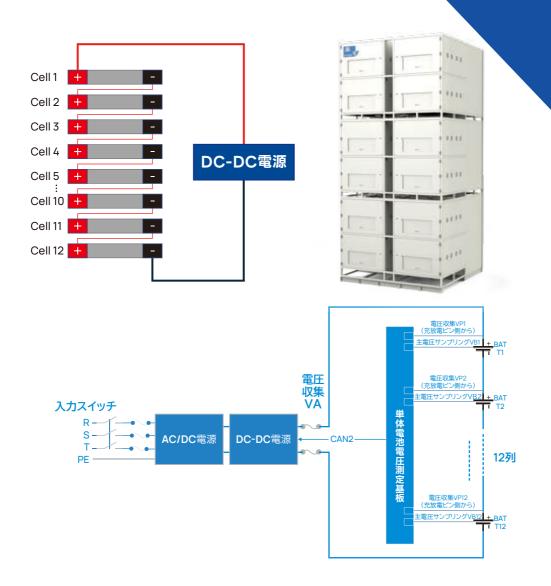
微网节能型直流总线方案

设计说明

AC/DC变换器、储能集装箱、化成分容DC/DC通过700V/1500V直流母线耦合电气连接;厂区能量可由EMS能量管理系统实时调度。

方案优势

节能效果


相对传统化成分容方案,额定功率下,直流母线电压高,电流小,线损也相对减小,系统整体效率提升,节能效果提升20%。

整体成本

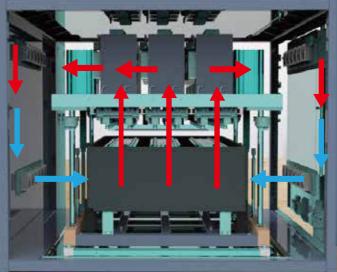
相对传统化成分容方案,AC/DC采用大功率一体机,整体成本可节省10%以上。

节能型串联化成方案

设计说明

以图为例,12个电池一串(可按16一串,建议最多不超过一个托盘数量为一串的方案),无需旁路切换板,采取整串同时充电的控制方式。

方案优势


- 电芯一致性好;
- 充电效率更高: 回路阻抗小能量回馈相比传统并联方式提升10%-15%;
- 成本更具备优势:设备功率线使用比例减少80%,极大降低功率线束使用成本;
- 整个系统更加简洁,可靠性高。

容量水冷一体机方案

设计说明

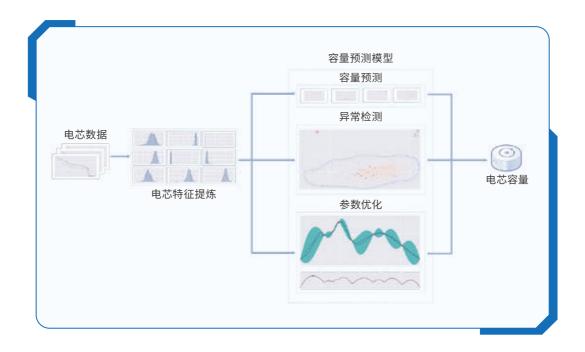
库位内集成了容量电源和容量针床,温度由空调水冷却方 案控制。

方案优势

充放电效率

节能效果

整体成本


- 容量库位均温可达到±2°;
- 一体结构较传统至少节省电源柜50%空间;
- 线路变短电损与外部功率线束对接节省 90%以上;
- 设备成本预计可同比降低5%~10%不等。

容量预测系统

中国专利: ZL.2017111488436 国际专利: PCT/CN2017/111651

美国专利: 15/847,959

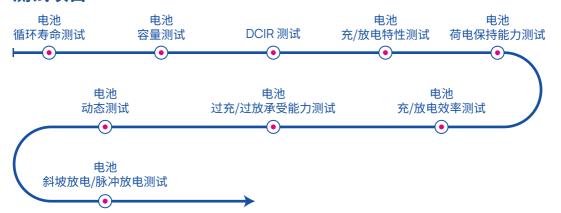
中国专利优秀奖

设计说明

利用电芯部分容量的充放电曲线,基于AI大数据预算,预测出电芯容量完整的充放电曲线;系统包含电芯特征数据提取,离线大数据训练建模,在线重建预测,迭代优化模型等部分。平均预测精度 $\leq 0.2\%$,最大预测精度 $\leq 0.5\%$ 。

方案优势

- 容量工艺时间缩短1/3以上;
- 容量设备配置减少1/3以上;
- 厂区容量设备占地减少1/3以上;
- 厂区容量设备耗能降低1/3以上。


MAIN EQUIPMENT

主要设备

电源充放电测试柜

适用于方形/圆柱/软包电池

测试项目

系统特点

- 设备节能效率高,放电时能量回馈电网,产生热量小;
- 设备精度0.05%,采样频率5ms/次,稳定度高;
- 独立通道,每个单独通道可独立充放电条件设置;
- 多网络集成管理,集中控制在一台电脑上;
- 完整的输入和输出、软硬件保护、反向连接保护、 电源接通和断开功能;
- 启动通道时无冲击电流。CC/CV转换无缝过度, 无任何电流突破;
- 模块化设计,便于维护;
- 数据清晰全面、可实时对接上传MES系统。

设备参数

型号		ECT0530A	ECT0560A	ECT05100A	ECT05200A	ECT05400A		
主通道数		96CH/机柜	48CH/机柜	24CH/机柜	12CH/机柜	6CH/机柜		
电压	精度	± (0.05%FS+0.05%RD)						
七 压	分辨率	0.1mV						
电流	精度	± (0.05%FS+0.05%RD)						
电流	分辨率	0.1mA						

HYNN

负压化成针床

用于方形电池

负压地层室采用六面保护设计,配置双消防(水和气体)。

系统特点

模块化设计

托盘单元和子组件设计良好,适合 高速测试和大规模生产,便于安装、 更换和维护。

防尘

机械单元部件之间,不存在金属与金属之间的直接接触,有效防止碰撞过程中的粉尘掉落。

多重安全保护装置

双重监控方式:烟雾传感器+温度控制,有效保证测试安全。

库位层间使用用不锈钢板和防火岩棉隔离。

双缸

采用双缸模式,使运动过程比较平稳,提高接触性能。

托盘定位方式

托盘将采用两次定位,首次为机械 单元四周的导向块导向做一次定位, 二次是对角线定位销精准定位。

OCV 测试设备

适用于方形/圆柱/软包电池

测试项目

系统特点

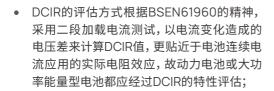
- 设备可搭配在输出线体外,也可跨接在线体内,配置灵活,按需定制;
- 人机界面采用嵌入式设计,显示器高度和操作平台依据人体工程学要求设计;
- 采用高精度的测试仪表,精度高,性能稳定可靠;
- OCV测试机能够与前后工序自动化物流设备及工艺设备无缝对接,测试精度高,可靠稳定,拥有全自主研发知识产权。

设备参数

序号	项目	规格
1	电压测试范围	0~6V
2	内阻测试范围	0~300mΩ
3	电压测试精度	±0.01%rdg. ±3dgt (V)
4	内阻测试精度	±0.5%rdg. ±5dgt.
5	测试仪表	Agilent 34461A (电压) 日置3562 (内阻)
6	适用电源	AC 220V 3 Ø 50Hz

HYNN

DCIR 测试设备

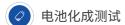

适用于方形/圆柱/软包电池

测试项目

电池的直流内阻测试

功能特点

- 电源柜测试仪切换响应时间小于15ms, 脉宽小于100ms, 可瞬间捕捉到电流、电压微小变化曲线, 为测试电池DCIR提供准确、高精度的测试硬件平台; 软件算法按照HPPC标准测试方法开发, 更接近的反应电池本身的性能特征;
- 接触探针采用合金探针,接触阻抗比同等铍铜探针小一倍以上,45°C高温环境下大电流过流温升小于6°C;
- 以1.5C以上大电流对电池进行冲击测试,采用压差除流差的方式,计算出电池直流内阻,DCIR测试设备可以将一些隔膜有破损的电池提前挑选出来。


序号		项目	规格		
1		电压测控精度	±(0.05%FS+0.05%RD)		
	2 电压	测量范围 (mV)	0~5,000		
2	化 压	测试精度	±(0.05%FS+0.05%RD)		
7		测量范围 (mA)	0~500,000		
3	电流	测试精度	可定制		

化成&分容针床设备

适用于方形/圆柱/软包电池

测试项目

功能特点

托盘定位采用两次定位, 首次为机械单元四周的 导向块导向做一次定位, 二次是对角线定位销精 准定位。

每个库位根据风道走向,在风道上设计安装2个烟感器;每个电芯——对应一个温度探头,实时监控电池壳体温度,烟感和温控双重监控方式,有效确保测试安全。

探针采用针组或同心针,由电流针和电压针组成,探针针头为锯齿状,铍铜镀金,接触阻抗小,电流温升小于10℃,保证通过电流的精度及电压采样准确性。

分档机

适用于方形/圆柱/软包电池

功能特点

- 可实现多档位设计,档位依据客户需求定制开发;
- 扫码机构能够自动扫描电池托盘条码及单体电池二维码, 若扫码失败则立即报警, 并提醒人工处理。

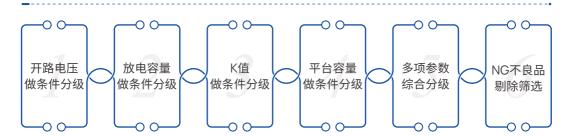
项目	参数值
设备功率	10kW
档位	可定制
运行温度范围	0~40°C
运行湿度范围	0~85%
适用电源	AC 380V 3 ¢ 50Hz
气源压力	0.5~0.85MPa
进出料	托盘自动流入,完成后,自动将空托盘推出
设备故障率	≤1%
 分档可选方式	电压、交流内阻、直流内阻、K值、容量等

高温压力化成设备

用于软包电池

功能特点

- 热压时电池被加热,增加电解液的流动性,使电解液 粘度较高,电解液得到充分的浸润,容易形成致密的 SEI膜,增加电芯循环寿命;冷压使电芯迅速降温,塑 形化成,控制了电芯的形状;此种热压化成出来的电 芯具有活性物质发挥好,鼓壳几率小,循环寿命长等 优点;
- 采用卧式热压模式,夹具采用伺服丝杆的方案,压力 传导均匀,压力控制误差≤10kgf;
- 热压夹具采用电加热方式,且温度可根据实际使用 要求灵活调整,最高设计温度90℃;
- 夹具兼容单边出极耳和双边出极耳的方式,可实现 快速换型;满足客户个性化的定制需求。


项目	参数
电压测量范围	充电0~5V;放电1.5~5V;分辨率0.1mV
电流测量范围	0~100A (可定制),分辨率0.1mA
电流和电压精度	±(0.05%FS+0.05%RD)
各电芯温度均匀性	± 2°C
压力控制坡度	200~1000kg:<±20kgf;1000~6000kg:<2%ST
可加热范围	室温~90°C
通讯方式	以太网
通道利用率	≥99%

自动兼容分档机

适用于方形电池

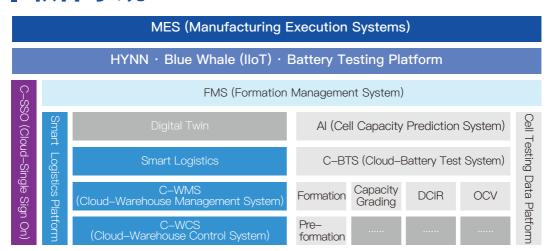
测试项目

系统特点

故障率

故障率低于0.2%,可实现多档位设计,档位可定制;

扫描机构可以自动扫描电池托盘条码和单个电池二维码, 若扫码失败将立即 报警并提醒人工处理。


功能特点

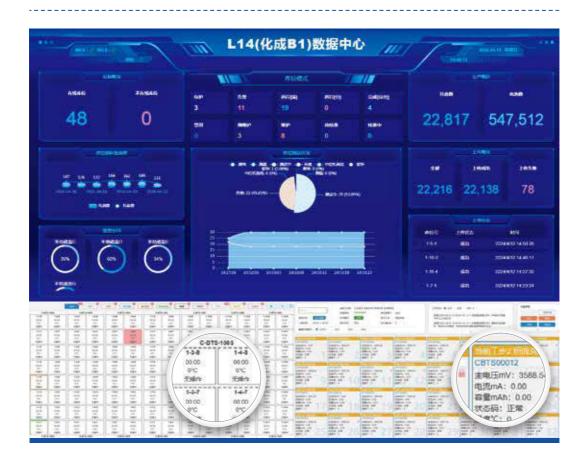
- 分档可选方式: 电压、ACIR、DCIR、K值、容量等;
- 分组机械夹爪具有电池夹取到位检测功能。一旦出现异常情况,设备将立即停止运行并发出警报;
- 同类产品将被选择放置在另一个托盘中,自动选择可以避免人为错误。

项目	规格
设备功率	10kW
档位	可定制
适用电源	AC 380V 3 € 50Hz
进出料	托盘自动流入,完成此处理步骤后,然后空托盘自动流出
分档可选方式	电压、ACIR、DCIR、K值、容量等

SOFTWARE SYSTEM

软件系统

C-WCS: Cloud-Warehouse Control System



C-BTS (Cloud-Battery Test System): 电池测试系统云平台支持多场景(量产线、实验室)、多产线模式(自动线、手动线)及多样设备管理(化成、分容、OCV、DCIR)。基于恒翼能蓝鲸IIoT平台研发,技术自主可控,致力于推动电池检测程序碎片化向平台化转移,为客户提供一站式服务,加速行业软件向一体化、国际化、数字化升级,打造电池智能测试软件行业新标杆。

HYNN

C-BTS: Cloud-Battery Test System

电池测试系统云平台支持多场景(量产线、实验室)、多产线模式(自动线、手动线)及多样设备管理(化成、分容、OCV、DCIR)。基于恒翼能蓝鲸IIoT平台研发,技术自主可控,致力于推动电池检测程序碎片化向平台化转移,为客户提供一站式服务,加速行业软件向一体化、国际化、数字化升级,打造电池智能测试软件行业新标杆。

项目现场

CELL/BATTERY PACK & CLUSTER TESTING SYSTEM

理电芯、电池包与电池簇检测系统

5V实验室高精度电芯检测设备

高功率密度

DC/DC采用第三代半导体器件 提高开关频率,降低电源尺寸

AC/DC采用单管替代IGBT模块 提高开关频率并降低成本

高效率

采用750V和15V二级共母线让 能量循环更高效

采用LLC软开关技术达到高频 隔离并提升效率

高可靠性

AC/DC采用三电平技术降低谐波分量 和共模干扰

采用交错并联技术降低输出电流纹波

符合安全标准: EN62477-1

符合EMC标准:

EN61000-6-2/EN61000-6-4

高性能

模块化设计,多机并联电流≥3000A 支持CC、CV、工况模拟等多种测试工况 采用CANFD通讯,采样频率可达1ms 24bit高精度采样,控制精度

可达0.02%FS

专利电流分档控制技术,响应时间≤2ms (专利号CN202323053472.7)

设备参数

DECT05300A

DECT05600A

DECT051200A

DECT052400A

DECT053000A

机型

DECT5300A-3000A

电压精度

±0.02%FS

电流精度

±0.02%FS (分档: 75A/档)

充电输出电压范围

0~5V

电流响应

2ms (10%~90%)

充电峰值效率

83%

辅助通道

电压/温度/压力传感器

辅助通道温度采样板

量程-40℃~120℃,偏差≤±1℃,分辨率0.1℃

设备工作环境温度

-10℃~35℃

通道数

1-32CH或定制

电压分辨率

0.1mV

电流分辨率

0.1mA

放电输入电压范围

1.5~5V (OV可定制)

高速数据采样

1ms

放电峰值效率

78%

辅助通道电压采样板

采样范围0V~+6V, 精度≤±1mV, 分辨率0.01mV

设备输入电压

380V3P

数字回馈型电池组检测设备

功能特点

出色的数 操作系统 高精度 据统计、分 易编程、易 析及报表 检测与控制 堂握 生成功能 系统通道 先进的多 宽直流电 可并联使 压输入范 电平技术, 用,增强设 围,提高系 提升整机 备的使用 效率 统效益 范围

设备参数

2	n	1	/1	n	Δ	-2	4	Н
_	u	•	/	v	$\boldsymbol{-}$	4	-	

100V120A-8H

交流输入电压范围 380VAC ±10%三相五线制

功率范围 4.8~160kW

并网电流 (THD) ≤**5% (额定功率)**

输出电压控制精度 ±0.3%FS

电流上升/下降响应 ≤10ms (10%~90%)

馈电效率 ≥**90%**

功率精度 **2**‰

坦爪接口 LAN/CAN2.0/RS 485/SMBUS

最大相对湿度 0~90% (无凝露)

30V30A-24H

100V300A-2H

输入电网频率范围 50±2Hz

功率因数 >0.99 (额定功率)

输出通道 1~24CH

输出直流电流范围 10~800A

电池输入电压范围 20~200V

电池电压显示分辨率 0.1mV

数据采集周期 10ms

防护等级 IP 20

尺寸 (宽*深*高) 800*800*2200mm

60V60A-24H

200V800A-1H

交流输入最大功率 5.5~180kW

充电效率 ≥**90%**

输出直流电压范围 20~200V

输出电流控制精度 ±0.3%FS

电池最大输入电流 10~800A

电池电流显示分辨率 **0.1mA**

上位机数据记录周期 100ms

工作温度范围 -10℃~45℃

辅助采样 **电压**±5**V**,温度-40℃~200℃

HYNN

大功率储能集装箱/电池簇组测试设备

- ▶ 2023年广东省科技进步奖二等奖 (攻克2500V高压大功率复杂测试环境)
- ▶ 适用于电池生产企业、储能厂商及检测、研究机构等

高品质能量回馈,最高效率 ≥96%

高功率因数值,>0.99

并网电流总谐波含量≤3%

444

I型三电平技术, 电压宽范 围输出, 纹波小

测试项目

短路、绝 缘、耐压 测试 ACIR、 DCIR、BMS 性能验证 工况模拟、 容量、循环 寿命测试

脉冲充/放 电特性 充放电 效率 一致性 测试评价 过充/过放 承受能力 测试

产品亮点

多级权限管理

MES数据接入

BMS双向通讯,自定义BMS数值作为 控制/保护参数

工况模拟

系统通道可 并联使用

DSP全数字化控制

防反接,数据 安全保护

设备参数

0-200V 10-300kW

电流上升/下降响应时间 <5ms

电压分辨率 **0.1mV**

0-1000V 50-800kW

充放电切换时间 <10ms

电流精度 ±0.03%FS

0-2500V 1000kW-6.3MW

电压精度 ±0.03%FS

电流分辨率 **0.1mA**

6MW级储能集装箱测试系统案例 叫阿姆拉

按照客户需求定制设计6.3MW的储能集装箱测试系统,所有储能设备及分布式系统通过调度系统统 一与MES进行数据交互,实现设备和上下游系统的交互。

案例亮点

多台设备并机的控制策 略,实现灵活配置

多重软硬件保护机制, 实现产品的可靠运行

稳定的软硬件性能,高 精度、高可靠性

ENERGY STORAGE SYSTEM QUALIFICATION

储能系统产品认证

CQC 认证

VDE 认证

SAA 认证

CEC 认证

FCC 认证

CE 认证

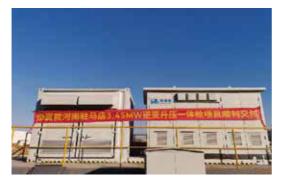
UL 认证

CSA 认证

PROJECT REFERENCE

合作案例

▶ 国内某大型电池企业储能集装箱节能 测试规模应用


▶ 江苏盐城某综合国企节能测试规模应用

欧洲某能源集团节能测试规模应用

▶ 欧洲某大型电池企业节能测试规模应用

▶ 河南驻马店某能源集团一期储能项目

▶ 内蒙古鄂尔多斯某能源集团一期储能项目

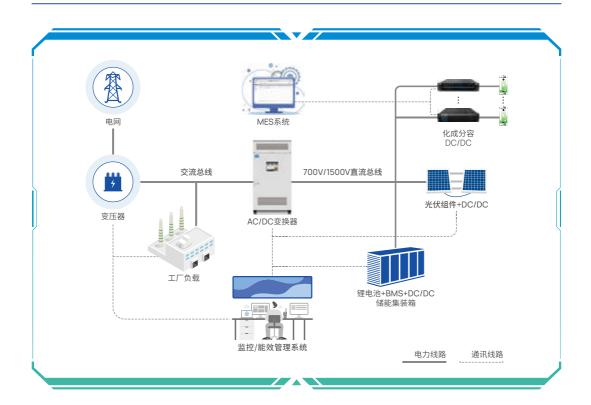
▶ 江苏盐城某综合国企储能项目

▶ 广东东莞某光储充检项目

▶ 黑龙江大庆某综合国企储能项目

▶ 广东某能源集团储能项目

▶ 中东某地区建筑工地拖挂式临时电源解



▶ 欧洲某公司电动重卡临时补能MW级解决方案

SOLUTION HIGHLIGHTS

储能系统配套解决方案

微网节能型直流总线方案

设计说明

系统由AC/DC变换器、储能集装箱、化成分容DC/DC通过700V/1500V直流母线耦合电气连接。厂区能量可由EMS能效管理系统实时调度。

方案优势

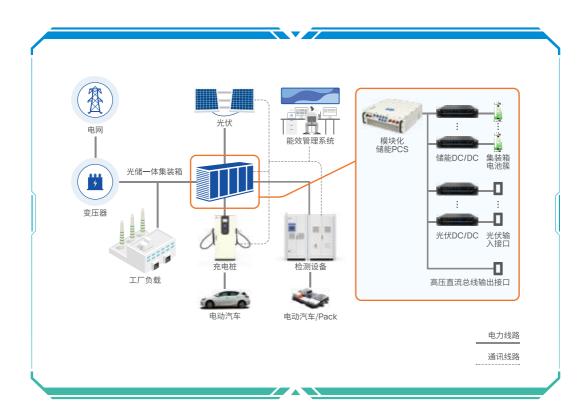
多机并联·高效节能

节能效果

相对传统化成分容方案,额定功率下,直流 导线电压高,电流小, 线损相对减小,系统 整体节能效率提升 20%。

整体成本

相对传统化成分容方案,AC/DC采用大功率一体机,整体成本可节省10%以上。

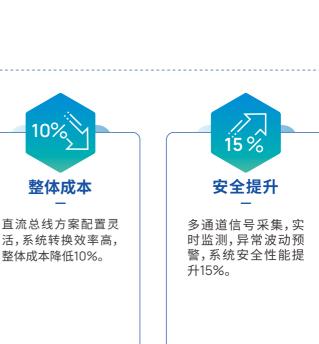


稳定性能

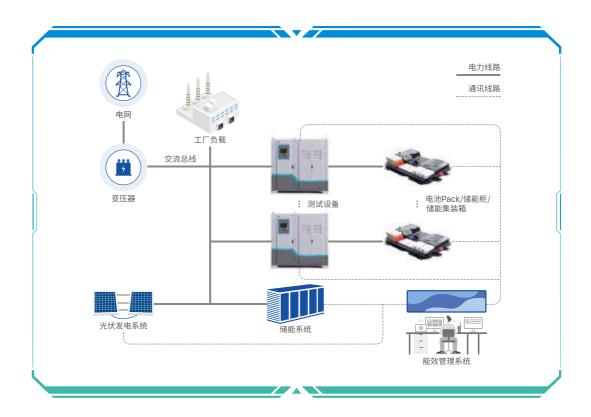
实现多台高压大功率 PCS交直流非隔离并 联控制,通过共模电压 抑制策略,环流抑制技 术以及多机并联谐制 抑制算法,大幅提升系 统可用容量,稳定性能 有效提升15%以上。

HYNN

光储充检一体化解决方案



设计说明


系统由光储一体集装箱、充电桩和配套的储能PCS、检测设备、智能能效调度管理系统组成。系统能量可由能效管理系统实时调度。

方案优势

储能与动力电池微网节能测试解决方案

设计说明

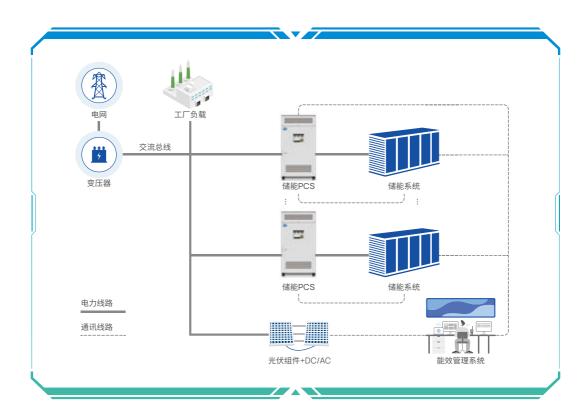
系统由储能与动力电池测试设备、储能集装箱、光伏发电系统经交流母线耦合电气连接。厂区能量可由能效管理系统实时调度。

方案优势

节能提升

系统经能效管理系统智能调度,实现多能互补,节能效率提升15%。

效率提升


基于部分充放电数据的电池完整充放电曲线预测,缩短测试工艺流程,测试效率提升50%。

安全提升

多重软硬件保护策略, 高可靠性数据实时记 录存储,系统安全性能 提升20%。

储能系统配套解决方案

设计说明

系统由储能PCS、光伏发电系统、储能集装箱以及配套的智能能效管理系统组成。各功率单元之间通过交流母线耦合电气连接。系统能量可由能效管理系统进行实时最优能效调度控制。

方案优势

节能提升

基于电站出力预测和 储能充放电调度,对间 歇性、波动性的可再生 能源发电出力进行平 滑控制,满足并网需 求。

效率提升

通过储能系统实现电 负荷的削峰填谷以及 频率的快速灵活调节, 保障电能质量与。通过 安全稳定运行。通理系统管理系统管理系统 机并联PCS,提升系统 效率。

用电成本

通过低电价时给储能 系统充电、高电价时给 储能系统放电,实现峰 谷套利、自用备用等需 求。

FEATURED EQUIPMENT

核心设备

储能变流器

高效转换

采用三电平控制技术,最大转换效率 99%

安全可靠

高防护等级 多级交直流熔断保护

应用广泛

具备VSG、VF、PQ、黑启动等功能 适用于发电侧、电网侧、用户侧等多种储 能应用场景

电网支撑

符合CE、CQC标准 支持高/低压穿越,频率穿越 电网适应能力强 支持功率快速响应

集中式储能变流器

PCS1100-1000TA

PCS1250-1500TA

PCS1725-1500TA

PCS2500-1500TA

EZ PONNIN

额定交流功率 1100/1250/1725/2500kW

额定电网频率 50/60Hz

最大转换效率 99% 交流过载能力 1210/1375/1897/2750kW

直流电压范围 650~1000/1000~1500Vdc

通讯协议 IEC104/IEC61850/MODBUS TCP

额定电网电压 400/690Vac

直流最大电流 1861/1375/1897/2750A

模块化储能变流器

PCS0125-1500MA

PCS0215-1500MA

PCS0215-1500MS

PCS0430-1500MS

额定交流功率 125/215/430kW

额定电网频率 50/60Hz

最大转换效率 99% 交流过载能力 137.5/237/473kW

直流电压范围 650~1000/1000~1500Vdc

通讯协议 IEC104/IEC61850/MODBUS TCP 额定电网电压 400/690Vac

直流最大电流 212/237/473A

防护等级 IP 65

移动储能

移动储能应用工况

充电 ▶

放电 -

移动储能系统

⇒│灵活部署

离网供电,随车而动,即插即用。 灵活应对各种突发电力需求

产品 特点

← 大容量大功率

采用高能量密度动力电池 单舱1.8MWh,支持并联,满足 各种用电场景

₩ 应用广泛

根据各种场景提供不同接口,适应极端工作环境。从移动EV充电站、户外活动与展览、农村与偏远地区、建筑工地、物流园区、工业生产、到采矿应用,移动储能集装箱都能提供稳定的电力供应,应用场景广泛

❷ 安全稳定

24小时智能监控,实时评估电池状态。从 部件、模块到系统实施多级保护。基于电 池状态和负载需求智能调控,实现最佳的 充放电策略

移动储能系统应用场景

合作案例

设备参数

电池舱参数

电池类型 **磷酸铁锂**

额定电量 1836kWh

符合标准

GB/T38031/UN3536/UN38.3

防护等级 IP 54

设备尺寸 **3020(L)*2438(W)*2896(H)mm** 标称电压 614.4Vdc

电池成组 **3*3P192S**

冷却方式 **液冷**

运行温度 -30℃~+50℃

充电舱参数

额定输出功率 1500kW

输出电压范围 200~1000Vdc

冷却方式 **智能风冷**

运行温度 -**30℃~+50°**℃ 额定输出电流 1500A

充电接口标准

MCS/CCS1/CCS2 (可选)

防护等级 IP 54

设备尺寸

3020(L)*2438(W)*2896(H)mm

变流升压一体机

→ 高度集成

一体化设计提高空间利用率, 易于安装部 署,灵活配置

安装简便、运输方便

高效稳定|👶

IP54防护等级,环境适应性强 优化变流与升压单元,提升系统效率

半 | 节能降本

三电平拓扑,一体机最大转换效率98.5% 集成度高,占地小,便于运输、安装、减 少现场施工成本

电网支持 | 🏗

具备LVRT和HVRT功能 具备有功无功四象限调节功能功率快速 响应 (<10ms)

设备参数

IBC-1500V-5MW

最大直流功率 5000/6250/6900kW

额定直流电流 5000/6250/6900A

额定交流电流 4184/5230/5774A

电流谐波 (THDi) <3% (额定功率)

最大效率 98.5%

IBC-1500V-6.25MW

直流电压范围 1000~1500V

交流电压范围 586~759V

额定交流电压 690V

变压器类型 干变/油变

防护等级 **IP 54**

IBC-1500V-6.9MW

直流输入路数 2/4/16/24

最大交流功率 5500/6875/7590kVA

额定电网频率 50/60Hz

电压变比 0.69kV/35kV

允许环境温度 -35℃~+60℃

ENERGY EFFICIENCY MANAGEMENT SYSTEM

能效管理系统

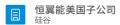
通过工业园区微电网用电需求预测,调节充放电比例,实现最优充放电均衡控制,减少用电能耗,实现微网系统实时最优能效管理控制。支持多种新能源应用场景,如调频调峰、平滑输出、孤岛黑启动、削峰填谷等。

应用价值

功能特点

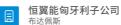
用科技创新提升客户竞争力 让智造更高效、能源更安全

广东恒翼能科技股份有限公司(总部)

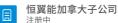

- (+86-4001667608 / +86-769-26627730
- @ www.hynn.com
- ◉ 广东省东莞市松山湖园区南园路8号

恒翼能欧洲技术有限公司(欧洲子公司)

- **(**) +49 **(**0) 621 7187 9019
- info@hynn.de
- © Langer Anger 7-9, 69115 Heidelberg, Germany


广东恒翼能科技股份有限公司(日本子公司)

- (03-4530-0370
- ⑨ 大阪府大阪市北区梅田二丁目 5番13号桜橋第一ビル304号



恒翼能瑞典子公司 ^{哥德堡}

恒翼能韩国子公司